

DARPA RHEX

Alan Rudolph, DSO

arudolph@darpa.mil

Making Robots More Like Animals

Today

Rhex: a stable legged SUGV FCS ready

The Future

What do legs, wings, fins offer Defense mobile systems?

There are many hard problems in robotics, look to biology for:

- Exploiting Robust Dynamics
- Building a Brain
- Integrate Sensors and Communications

Use Biomimetic Sensory Feedback for Higher Level Dynamic Mobility

Visual Odometry and Optical Flow

- Track motion through combined feature triangulation and image flow
- Improved dynamic motion models will improve performance

Proprioception

- MEMs based gyros for positional information (yaw, pitch, roll)
- Strain gauges for force feedback
- Mems Antennal structures as bump sensors and contact guidance

DARPA Mobile Autonomous Robot Software (MARS)

Doug Gage, IPTO

dgage @darpa.mil

MARS Technical Approach

Intervention

User interfaces structured so that humans can assist robots when needed

Interaction

Natural information exchange between robots and humans -- as teammates, bystanders, supervisors, and operators

Perception

Sensor-based algorithms to sense, interpret, and "understand" salient environmental features

Learning and Adaptation

Techniques to acquire knowledge through reinforcement, supervised, or imitative learning

Behaviors and Architecture

Software components and structures to perform robot tasking

Perception

- Mapping Complex Indoor/Outdoor Environments
 - Faster, more accurate, larger scale
- Dynamic Environments
 - Detection, Tracking, Modeling

The Carnegie Mellon Robotic Mine Mapping Project

Sebastian Thrun, Michael Montemerlo, Dirk Haehnel, RudolphTriebel, Wolfram Burgard, Red Whittaker

sposored by: DARPA IPTO (MARS)

Interaction with Humans

- Demonstrated supervised machine learning of autonomous tasklevel behaviors through full immersion teleoperation and off-line reflective analysis.
- Mobile Remote Workstation demonstrated long distance operation of Robonaut in Houston TX from MARS PI Meeting in Arlington VA.

DARPA Grand Challenge: Open Source MARS Software

CarMeN (Carnegie Mellon Navigation Toolkit) integrated solutions to indoor robot navigation and mapping problems.

http://www.cs.cmu.edu/~thrun/3d

- CMVision (CMU) library to perform general (i.e., and shape or color) obstacle avoidance http://www.cs.cmu.edu/~jbruce/cmvision
- YARP (MIT) utilities for programming abstractions used in the control of humanoid robots, an inter-process communication mechanism suited to stream large quantities of robot's vision data, and supports a distributed architecture where there is no "in charge" module

http://sourceforge.net/projects/yarp0

http://www.cc.gatech.edu/ai/robot-lab/research/MissionLab/

DARPA Grand Challenge: Open Source MARS Software (2)

 XVision (Johns Hopkins Visual Tracking Software)
 provides generic interfaces to a wide variety of camera systems, generic visual tracking primitives, and methods for combining tracking for complex situations.

http://www.cs.jhu.edu/CIRL/XVision2/

 Yampa (Yale) is a language having continuous time-varying behaviors and discrete eventbased switching. "Arrows" are used to structure programs and improve efficiency.

http://www.haskell.org/yampa/

 The GRL Language (Generic Robot Language) (Northwestern is a programming language for behavior-based robot controllers that supports a large subset of functional programming semantics for real-time control and signal-processing applications.

http://www.cs.northwestern.edu/groups/amrg/distributions/grl/grl-2.0.zip

Approved for Public Release, Distributed Unlimited-41354

DARPA Distributed Robotics

Elana Ethridge, MTO

eethridge@darpa.mil

Distributed Robotics

Objectives:

- Small mobile robots
- Modular robots for physical reconfiguration
- Enabling technologies for :
 - actuation / locomotion
 - communication & sensing
- Demonstrate collective & cooperative behaviors with limited numbers of small robots

Challenges:

- Size
 - Mobility (ground clearance, obstacles)
 - Sufficient processing, sensing, power, communication
- Effective operation of small robots
 - Task -> behavior -> sensor
 - Tailored to the mission

DARPA Software for Distributed Robotics (SDR)

Doug Gage, IPTO

dgage @darpa.mil

SDR Technical Thrust Areas

Coordinated Behaviors

- Explicit sensor-based behavior and model-based control
- Distributed (emergent) control techniques (e.g., analogous to potential field theory in mechanics)

- Lightweight energy-conserving networking protocols
- "Pheromone" communication strategies

Human-robot Interface

- Explicit symbolic interface
- Implicit embedded or stigmergic interface

- Computational architecture
 - Distributed processing
 - Proxy (off-board) processing
 - Hybrid (shared or hierarchical) processing

Lab & Field Experiments

- Control/Communications
- Human-robot interaction
- Technology transitions

Approved for Public Release, Distributed Unlimited-38953

DARPA PerceptOR

Scott Fish, TTO

sfish@darpa.mil

PerceptOR Program

- Perception for Off-Road Robotics FY01-03
- 3 Teams with complimentary approaches
- 4 Unrehearsed Field Experiments in <12 months!
 - 61 km of movement
 - 68 hrs of measured testing
 - Utilize small vehicle (commercial ATV)
 - Purposely operate vehicles in concealment terrain
 - Ft A.P.Hill, VA (woods, meadow, trail, winter)
 - Yuma, AZ (desert, spring)
 - Mountain Training Warfare Center, CA (alpine)
 - Ft Polk, LA (woods, meadow, trails, fall)
- Negotiating Phase III of Program Now!

PerceptOR Sensor Usage

(active)

 Scanning Ladar provides 3 Dimensional geometric information (day or night)

 Now getting good results with stereo (a passive sensing system) for 3D + spectral information

Radar is good in bad weather but limited resolution

 New techniques with 2D cameras are being developed for 3D sensing while moving

MWIR (passive)

RADAR (active)

Operating Day or Night

UAV and UGV Autonomous Operation

- Real-time UGV/UAV autonomous coordination has been demonstrated for joint perception
- Process scaleable to higher altitude platforms

Prior Overhead Data Utilization

- Path planning is greatly assisted with Prior Overhead Data
- Have demonstrated autonomous re-planning onboard the vehicle
- Need to utilize this data to queue sensors and adjust perception/navigation settings

DARPA Unmanned Ground Combat Vehicle (UGCV)

Scott Fish, TTO

sfish@darpa.mil

UGCV Program

- 3 year program started in FY01
- UGV design for FCS unconstrained by human crew
- 1.5 years of design analysis of 4 designs
- Prototype vehicles (6.5 ton, 0.7 Ton) just rolled out
- Metrics:
 - Endurance: 14 days and 450 km between re-supply
 - Mobility: 1 m obstacles @ slow speed

0.25 m obstacles at moderate speed

- Payload fraction: 25% of gross

UGCV Advanced Technologies

Hybrid Electric Drive:

- Efficiency
- Damage tolerance
- Packaging
- Silent watch/Silent Mobility

Advanced Materials

- Weight savings
- Thermal properties
- Magnetic properties
- Fluid properties

Retiarius Rollout

January 22, 2003 Albuquerque, NM

Spinner Rollout

Spinner Suspension Test Rig

Terrain Mobility Validation

Team Rebound (Narrated Video)

Rock Climber Vehicle

Send Off

- Lots of robot research being done at DARPA
- Much still needs to be done
- DARPA pursues many different means to encourage Novel approaches
- Hope this has been helpful in understanding existing work
- Best of luck in pursuing your own special approaches